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Unimolecular dissociation: an eigenchannel
generalized quantum view

By M. S. CHILD

Theoretical Chemistry Department, University of Ozxford, 5 South Parks Road,
Ozxford OX1 3UB, UK.

A quantum mechanical eigenchannel theory of unimolecular dissociation is outlined
with specific reference to systems with many closed and few open channels. The
resonances (whose lifetimes determine state specific dissociation rates) are shown to
decay at rates determined by the fractional open channel weightings in the relevant
eigenchannels, while the relative weightings between the open channels determines
the fragment internal state distribution. An isolated resonance, random eigenvector
version of the theory bears a similarity with established statistical theories. A
simplified model application to the in plane dissociation of HCN is reported, for
which 60 channels are required for convergence. The decay rates for different
resonances are found to be broadly statistical, but the fragment state distributions
vary markedly from one resonance to another even when dynamical interactions
between many overlapping resonances are taken into account.

1. Introduction

The conventional RRKM theory of unimolecular decomposition (Robinson &
Holbrook 1972 ; Forst 1973) separates the molecular space into internal and external
parts separated by the transition state, in such a way that the decomposition rate
appears as a ratio of the state density at the transition state to that in the internal
region. This paper seeks to analyse the nature of these ‘states’ from a consistent
quantum mechanical viewpoint that encompasses both bound and decomposing
states, with the object of providing a framework for interpretation of the new
generation of state specific experiments (Guyer et al. 1984 ; Carrington & Kennedy
1984 ; Reisler & Wittig 1986; Butler et al. 1986). The questions raised concern the
statistical or non-statistical character of individual decay rates and the factors that
affect the observed distribution of the fragments over their possible internal states.

The theory is presented from an internal collision (Waite & Miller 1980, 1981 ;
Holmer & Child 1983) or generalized quantum defect (Mies & Julienne 1984)
viewpoint, which draws on the elaborate structure of multichannel quantum defect
theory (Seaton 1983; Greene & Jungen 1985) by modifying the boundary conditions
to handle other than coulombic long-range interactions. The essential feature is to
visualize the internal motions as a sequence of internal collisions between the
ultimate fragments of which perhaps only a small fraction lead to escape.
Consequently the theory revolves around a large internal scattering matrix whose
order depends on the total number of interacting channels; the aim is to relate this
matrix to the much smaller physical S matrix relevant to scattering between the
channels that are open to escape. Several lines of development may be followed but
Fano’s (1970) eigenchannel approach proves particularly convenient because these
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274 M. S. Child

eigenchannels (of the internal § matrix) are found to support the ‘states’ observed
in any time independent experiment ; they correspond to the true bound states if all
channels are closed and go over naturally to resonant or scattering states as more and
more channels open up. Moreover, each such eigenchannel typically has weightings
in all channels such that the fractional open channel weighting controls the decay
rate of the resonance and the relative open channel components determine the
resultant fragment state populations. Special simplicities apply if the individual
resonances are assumed to decay independently, but inter-resonance interactions are
also readily taken into account.

The overall structure of the theory, which employs the boundary conditions of
Holmer & Child (1983) within the Fano (1970) eigenchannel description, is outlined
in §2. Section 3 analyses the isolated resonance approximation with particular
reference to the ‘statistical’ or ‘non-statistical’ nature of the dynamics. Section 4
then contains an illustrative application to a simplified model for dissociation of the
HCN molecule, in which the internal S matrix is obtained within the sudden
approximation. Finally, the main results and conclusions are summarized in §5.

2. The eigenchannel picture

The elements of the theory are illustrated in figure 1, in which the box labelled 2
represents a short-range large IV x NV internal-scattering matrix, which is assumed to
take into account all interchannel coupling. IV is therefore the number of channels
that are classically open at the boundary R, of the interaction region. Beyond R,
many of the channels will close, as depicted by the loops in figure 1, and this closing
imposes constraints on the relative phases of incoming and outgoing motion at the
outer turning points. The first step in the argument is to express the physical
scattering matrix S between the n open channels in terms of the elements of the large
matrix 2, by taking the above phase constraints into account.

It is convenient to follow Holmer & Child (1983) in defining 2" by means of the

equations
R >R

YR kR [0, 70 — X e, (1)
where ¢;(R) = JR ky(R)dR +4m,
ky(R) = {2m[E — Vy(R)}}/h, 2)

and a; is the inner classical turning point in the jth channel. Note that Mies &
Julienne (1984) adopt an R dependent equivalent to the matrix 2, but that the 2
adopted here is taken as a constant on the grounds that significant interactions are
assumed to be restricted to the region R < R.. Secondly, the V(R) appearing in
equation (2) are convenient mean potentials averaged over the internal motions of
the system; their choice is arbitrary provided they converge to proper limits as

R > o0 because different choices lead to different phases for the 2, which are
compensated by different phase terms ¢;(R).
The next step is to re-express equation (1) in the equivalent form
Qﬁ;i) R ;Rc k‘j_%(R) e—i(ai—%n)[aij e—ig’?j(R) + fi]’ eiq?j(R)]’ (3)
R
where Pi(R) = J ky(R)dR —im = ¢,(R) —ot;—3m, (4)
b,

j
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Figure 1. Diagrammatic representation of the elements of the theory.

b;
oy = J kyR)dR, (5)

a5

and 2y = e, el (6)
The quantities b; are the outer classical turning points for the closed channels or the
coordinate of the transition state (normally identified as an adiabatic barrier
maximum) for the open channels. Note that the V;(R) in equation (2) are assumed to
include centrifugal terms, and that barrier penetration corrections that are currently
neglected may be included along the lines of a recent paper by Child (1986).

The elimination of closed channels proceeds by assuming the following eigenphase
representation for the large, phase modified, matrix 2 (Fano 1970; Aquilanti &
Cavalli 1987): _

2y =BT ey, (M)
k

where 7' is a real orthogonal matrix and T is its transpose. Any symmetric unitary
matrix 2 may be factored in this form. It follows on substitution in equation (3) that
R> R,

YO R I H(R) e eI S T [0 4 020k 019] T, (8)
k

from which the sum over £ may be eliminated by means of the transformation
§z> =3 7}1 ,ﬁ;i) ei(ai+%1t)
i

R >R,

X CIi(R) [(1+e¥%) cos g, (R) —i(1 —e?) sin ,(R)] T, 9)

Equation (9) defines the eigenchannel representation. The next step is to form n
combinations of these new function vectors ¥ (R),

Y R)=XB,yPr), a=1,2,..,n (10)
1
and to require that
R R
(R) = kﬁ(R)[&aj sin(L kj(R)dR+%n)+Kaj COS(L kj(R)dR+in)] (11)
i i

Phil. Trans. R. Soc. Lond. A (1990)
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276 M. S. Child
for the open channels j = 1,2,...,n, while for the closed channels
YO (R) = k¥ (R) A, sin §y(R) (12)

as required by the JWKB boundary conditions at an outer turning point b;.
Equations (11) and (12) require that

304, j=1..mn,

Boy(1 +e2%) 3
2Bl +e 10 J=n+1, LN, 13)

and XB,(1—e") T, =—iK, j=1,..n. (14)
!

The orthogonality of the matrix 7" ensures that equations (13) are satisfied by the
choice,

a@

B,=T,1+e¥) a=1,..,n, (15)
which means, if the subscript j is replaced by £ for notational symmetry, that

Ka]. = Ka/f = 1% ,j?xl(l +e2iﬁl)~1 ( _ezial) ,1;,3
==X ’i;z tan 6, 7;,. (16)
!

Finally, the physical n x n scattering matrix may be expressed (Child 1974),
S = (I—-iK)™' ([+iK), (17)
with the K matrix elements given by equation (16).
In the context of unimolecular dissociation, the next step is to analyse S (or K) for

resonance behaviour by looking for abrupt changes in the eigenphase sum X, 5, as the
energy increases, where the 7, are obtained by diagonalizing S and K in the forms

S =XeX, K=ZXtanyX. (18)

The rate of dissociation is then obtained in the normal way (Child 1974) from the
energy derivative of the #;, while the populations in the different channels are
determined by the elements X, |*,a =1,..., 7.

3. Isolated resonance approximation

The simplest case occurs when the resonance is isolated in the sense that the abrupt
change in the eigenphase sum is attributable to a single term. Comparison between
equations (16) and (18) shows that this behaviour will occur around energies at which
0, = (n,+%) T because the kth term will dominate on the right-hand side of equation
(16) giving rise to the factorization,

K = tan d,(¢, 1), (19)
where ¢, and 7, are the column and row vectors with elements 7', and 7}, respectively

(e=1,2,...,n). A matrix of this form is readily verified to have a single non-zero
eigenvalue, given by

tany, = tan (8,)f,t, = tand, X |7,,/% (20)

a=1
corresponding to the normalized eigenvector
1
Xy = tp(f ty) (21)

Phil. Trans. R. Soc. Lond. A (1990)
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Unimolecular dissociation 277

The remaining eigenvectors u are necessarily orthogonal to ¢, (i.e. £, u = 0) because
K is symmetric; hence .
Ku =tan (6,) ¢, t,u=0, (22)
which confirms that the remaining eigenvalues are all zero.

The conclusion is that the resonance behaviour is concentrated in the term

7, = arctan (e, tand,), (23)
n

where =1t t,= X |T,% (24)
a=1

Hence, to the extent that changes in ¢, may be ignored around the resonance point,
the collision delay time may be estimated as

2dy,  2ehsec?d, (d&k)
Ty(B) = Tk = ), (25)
g dE  1+etan?d, \dE
Equation (24) may be simplified by means of the approximation
Oy = (n+Hn+(E—E,)n/ho,, (26)

where %@, is the energy separation between resonances in the eigenchannel. One finds
after some manipulation that for energies close to £,

il

T (B) = m, (27)
with the resonance width I', given by
I', =2¢,fid,/m. (28)
The delay time on resonance (£ = k) is therefore
T.(E,) =4h/T, = 2n /e, @,. (29)

Alternatively the state specific rate constant, which may be identified with the
inverse of half the collision delay time, may be expressed as

ky = 2[1,(E)]™" = 6,0,/ (30)

Finally, the populations in different fragmentation channels are given by

n
P = Xt = [Tl S [T 1)
1=-1
Equations (28)—(31) are central results of the theory.

To see their physical significance, notice that the factor (2n/@,) in equation (29)
may be interpreted as the time period for oscillatory internal radial motion in the kth
eigenchannel. Consequently (@,/m) in equation (30) is the rate at which complexes
emerge from the internal region to approach the transition state, while ¢, gives the
probability of crossing into the fragmentation region. (Equation (23) shows that
€, < 1 because the orthogonality of 7' ensures that

N
T =1,
a=1

where N is the total number of coupled internal channels.) The fragmentation
channel populations are then determined by the open channel components of the kth
eigenvector ¢, of 2.

Phil. Trans. R. Soc. Lond. A (1990)
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278 M. S. Child

This structure encompasses a range of possibilities. At one extreme 2 may be
assumed to be near diagonal, in which case the diagonal elements of 7' are close to
unity and the off-diagonal elements are small. Physically this means that some of the
eigenchannels are almost completely open with ¢, = 1 in equations (28)—(30), and
others almost completely closed with ¢, <€ 1; different resonances therefore have
widely different lifetimes. The opposite limit is a statistical one in which

|7,>~ 1/N, (32)
for all @ and k, so that according to equation (24)
€ R Egar X (N/N). (33)

Equation (30) then has an RRKM-like interpretation (Robinson & Holbrook 1972;
Forst 1973) in the sense that the decomposition rate depends on a factor (@,/m),
which represents the rate of arrival at the transition state multiplied by the
fractional number of open channels in the total coupled by the matrix 2.

4. Model application

The theory was applied to a simplified model for the in plane dissociation of HCN
based on the hamiltonian

= A I Gt 0 +W(R, 7, x), (34)
where y = 6,—0,,

W(R, 7, X) = D+ A(y) e RF) — 2D e=HR-Ro), (35)

A(y) =A,+A4,cosy+4,cos2y, (36)

and m and p are the reduced masses of H with respect to CN and of the diatomic CN
respectively. The parameter values D = 5.65 eV, 4, = 7.5025 eV, 4, = —0.265 eV,
A, =—1.5875¢eV, g=1. 860 A, R, =1.686 A and r,=1.1TA were chosen for
eonsmteney with the dissociation energies of HCN and HNC (5.65 eV and 5.164 eV
respectively (Herzberg 1976; Maki & Sams 1981)), an isomerization saddle point
energy of 2.1 eV (Pearson et al. 1978), vy = 3311 cm™ and the geometry of HCN
(Herzberg 1976). Note that motions of the CN vibration have been suppressed and
that the potential anisotropy is probably unduly concentrated in the repulsive term
in equation (36) compared with the form suggested by Murrell et al. (1984).
The reference potentials used in equation (2) were taken as
j2h2 l2h2

2mR2+2 > s+ WolR,7,), (37)

Vi(R) =

where Wy(R,r,) includes only the isotropic term in equation (36) and ! and j are
related by the total angular momentum constraint {45 = J. The internal S matrix
elements were then approximated in the discretized sudden form

Z Z w* 62”’()(’)?# (38)
Ji’
R, R,
where N(x;) = f k(R»Xi)dI{_f ky(R)dR
Vi(x) = (2m)Felins (39)
Phil. Trans. R. Soc. Lond. A (1990)
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Figure 2. A crudely simulated absorption spectrum, with intensity governed by the Franck-
Condon overlap with the ground bending state as in equations (40) and (41).

The number of y, values (which were chosen to be equally spaced between 0 and 2m)
was taken equal to the number of channels to be included, and 2 was factored into
even and odd blocks by transformation to real trigonometric basis functions, in the
usual way. It was found that 60 channels were required for convergence, and that the
matrix 2 was sufficient slowly varying to allow interpolation for its elements over a
grid with energy spacings of 50 cm™.

Preliminary results are presented in figures 2 and 3, within the isolated resonance
approximation. The resonance energies were obtained by interpolation for the points
at which 8, = (n,+3)7 in one or other of the eigenchannels, these being ordered
according to their eigenvector overlap with those at a central energy point in the
interpolation grid. The resonance widths were given by equation (28). The typical
computation time was 15 min CPU on a VAX 8600 series computer to characterize
100 resonances over a 400 cm™' wavenumber interval.

Figure 2 shows a simulated absorption excitation spectrum for the production of
CN radicals, with a Franck—Condon like measure of intensity,

ol ¥y = Za;‘ Tys» (40)
i

where 7}, are the components of the resonance eigenvector and a; are the components
of an angular momentum decomposition of the ground bending vibrational state

a; = (n) J: Yo(x) cos (jx) dx = (%)16_72/2'5, (41)

with f% = h/(I*kXX)% and I'* = ur2mR?/(ur>+mR?2). The peaks in figure 2 therefore
correspond to upper state eigenchannels with the highest zero-point bending
character, but it should be noted that the motions in this energy region resemble
internal rotation rather than bending and that |{i|¢,>> <0.15 even for the
strongest peaks.

Further information is provided in figure 3, which shows the individual resonance
positions and widths, together with the fragment populations in the ten lowest
channels. The scale of I" shows that each peak in figure 2 covers many resonances.
One also sees, as expected that the resonance widths, which determine the decay

Phil. Trans. R. Soc. Lond. A (1990)
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Figure 3. Energy variation of the isolated resonance widths (left-hand panel) and fragment
channel populations (right-hand panel) over the energy range of figure 2.
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Figure 4. Energy variation of the fragment channel populations associated with the closest
resonance after taking account of inter-resonance coupling. Vertical lines indicate isolated
resonance positions and fragment populations. The energy range covers the main peak in figure 2.

fragment channel population

rate, broadly increases as the number of open channels increases with increasing
energy. Moreover, apart from a few very sharp levels, close to threshold, the widths
in any given energy region differ at most by a factor of order two, which implies a
more or less statistically determined decomposition rate. Such a statistical picture is,
however, less well supported by the fragment state populations, which show marked
preferences for particular channels that vary from resonance to resonance.

The fact that the typical resonance width greatly exceeds the spacing from one
resonance to the next clearly casts doubt on the isolated resonance approximation.
Hence a full investigation of the effects of overlapping resonances was done, by
analysis of the eigenvectors of the physical S matrix, given by equations (16)—(18).
Results are illustrated in figure 4 for the fragment state populations determined by
the eigenvector of S with the largest value of tany (i.e. for the eigenchannel of S

Phil. Trans. R. Soc. Lond. A (1990)
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Unimolecular dissociation 281

closest to resonance). In the isolated resonance approximation such a plot would
yield a series of steps, with heights determined by the sticks in figure 4. The
calculated picture is more complicated because, although many of the population
changes occur around the isolated resonance positions there are a number of features,
such as the peaks in the j = 3 and j = 4 populations at 45606 cm ™ and 45629 cm™
respectively, that can only be attributed to quantum mechanical interference.

5. Summary and conclusions

The techniques of generalized multichannel quantum defect theory have, for the
first time, been used to formulate a unified quantum mechanical theory of bound
states and unimolecular dissociation. The central quantity is an internal scattering
matrix 2, whose eigenchannels support the bound states and the projection of whose
eigenvectors onto the physically open channels determines both the decay rates and
the fragment state populations. A ‘statistical eigenvector’, isolated resonance
version of the theory bears a close similarity to currently accepted statistical
unimolecular dissociation models, but the full formulation makes no statistical
assumptions.

Preliminary results from_a 60 channel model study of the in-plane dissociation of
HCN were reported, with 2 determined by the sudden approximation. It was found
that the distribution of decay rates, over different resonances, was broadly statistical,
being largely governed by the fraction of open channels. The distribution over
fragment states, from any given resonance, was much less statistical in character,
with many specific preferences for particular channels. Gross features of the fragment
state distributions were moderately insensitive to interactions between the many
overlapping isolated resonances, but some variations could only be attributed to
quantum mechanical interference.

The author is grateful to Dr F. H. Mies for comments on an early draft of the paper.
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Discussion

J. C. LiguT (Unaversity of Chicago, U.S.4.). 1t is, also, quite straightforward to obtain
both bound and resonance states in a unified fashion from a single L* calculation. In
this case the eigenvectors correspond to both bound states and to (approximate)
resonance and scattering states embedded in the continuum. The resonance states
may be identified using multiple L* calculations and stability analysis or from a
single L? calculation by evaluating the expectation value of an outgoing flux
operator (Choi & Light 1990). The resonance energies are obtained with accuracy
comparable with those of the bound states.

N. C. Haxpy (University of Cambridge, U.K.). 1 support the comments of Professor
Light, that the use of basis sets presents a unified picture for bound and continuum
states. An elementary example concerns the polarizability of the H atom. Using
second-order perturbation theory, it may be shown that bound np, H states predict
a polarizability of 3.645 a.u.t and that continuum p, states contribute the extra
0.855 a.u. to give the exact value of 4.5 a.u. On the other hand, a calculation of the
polarizability by the finite field approach, using a basis set of the form ze™", rapidly
converges to the exact value.

M. S. CH1LD. In answer to the comments by Dr Handy and Professor Light, the use
of basis sets may well be the way forward, particularly in view of the computational
efficiency of the discrete variable representation.

The eigenchannel version of generalized quantum defect theory that I described
has, however, certain advantages. The necessary internal § matrices and phase terms
are all smooth functions of energy ; hence sharp resonance features can be reproduced
even by interpolation over a coarse energy grid. Secondly, the eigenchannels unify
the bound and resonant states in a manner similar to that of the Wigner R matrix
method, but the scattering formulation reduces the size of the matrices to be handled
by a factor equal to the number of states in a channel.

Additional reference
Choi, S. & Light, J. C. 1990 J. chem. Phys. 92, 2129.
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